
1.

2.

3.

4.

Optional Observer Configurations
This page covers additional and optional features you can take advantage of is you wish. You are able to customize some of the features and make
advanced configurations in Observer for ServiceNow. The topics described in this section are completely optional and may require knowledge of
scripting with ServiceNow APIs.

Explore these advanced configurations and customizations:

Create a custom alert

Custom alerts allow you to define your own alerts to occur when ServiceNow events meet certain conditions. This provides you a way to monitor
events that are not covered by the built-in alerts already included with Observer.

Here's how to create one:

In Observer, click the menu icon ((), followed by the Settings icon), followed by Alert Configurations

Near the bottom right corner of the page, above theActions column, click +New

Type directly in each of the fields to add your custom alert (see more information below). At least one out of three of the following fields must
be filled out: Threshold, Velocity, Analysis Window.

Click Save

Field descriptions:

(A) Check the box to make your custom alert active in Observer.Active:

(B) Name: The name of the custom alert which is also the name of the event that will cause this alert to occur. This is the name that is sent in the
“name” field of messages sent from your ServiceNow instance to Observer. For example, if your ServiceNow instance has events called
“Perspectium_Monitor” and you've set it up inside the Perspectium app (under Perspectium > Observer > Event Subscription) to send messages to
Observer, then you can create a custom alert with this name to alert when certain conditions are met as described below.

(C) Description: Type any description for your custom alert.

(D) Threshold Operator: A dropdown containing operators such as “>”, “<”, “>=”, “==”, etc. This is used with the valued entered for threshold to
determine a minimum, maximum or specific event value in order for the alert to occur. For example if you have “>” here and “25” in threshold, the
condition for this alert with be an event that has a value of greater than 25.

(E) Threshold: The maximum value that must be met and/or exceeded for this custom alert to be triggered. This value must be a number value and is
used in conjunction with the threshold operator value to determine how the threshold behaves.

(F) Velocity Operator: A dropdown containing operators such as “>”, “<”, “>=”, “==”, etc. This is used with the valued entered for velocity to determine
the velocity direction. For example if you have “>=” here and “5” in velocity, the condition for this alert with be a velocity of greater than or equal to 5.

(G) Velocity: When an event is received, the rate of change per minute that must be met from the last time this event occurred for this alert to happen.
This is used in conjunction with the velocity operator and must be a number value. For example, if you have the velocity condition of “>=” and “5”, then
the alert requires that the event be increasing at a rate of greater than or equal to 5 per minute from the last time this event occurred.

(H) Analysis Window: The time window in minutes to analyze if an alert will occur. Generally when an event occurs, it is logged in Observer and then
if the same event occurs again in the time window specified here, then an alert will be created. This value must be a number value. For example, if the
analysis window is “12”, then an event must occur twice in a 12 minute time window for an alert to occur.

 After you have created your custom alert, you can modify any field for that custom alert by clicking and typing directly into that field. You NOTE:

can your custom alert by clicking the right arrow icon (or your custom alert by clicking the trash icon (. Testing your custom alert test) delete)
will create an alert.not actually

Create an event for slow transactions

 This is an advanced procedure that requires knowledge of scripting with ServiceNow APIs.

https://developer.servicenow.com/app.do#!/api_doc?v=kingston&id=client
https://developer.servicenow.com/app.do#!/api_doc?v=kingston&id=no-namespace

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

1.

2.

3.

4.

To create an event for slow transactions:

In ServiceNow, type into the Filter Navigator in the top left Scheduled Jobs and select it (it should appear under Perspectium > Observer)

At the top of the Scheduled Jobs form, click to create a new Scheduled JobNew

Type a name for your new Scheduled Job and make sure the box is checkedActive

Scroll to the scripting section and type your script for the new job

Below is an example of a script that could be used to create a new Scheduled Job for Observer called slow.transaction. For more information
about creating scripts for Perspectium Jobs in ServiceNow, see the .ServiceNow API Reference Guide

// Identify any instance within the last 15 minutes of the job "JOB: Perspectium MultiOutput
Processing" running longer than 1000; output one event per instance found
var gr = new GlideRecord("syslog_transaction");
gr.addEncodedQuery("type=scheduler^url=JOB: Perspectium MultiOutput Processing^sys_created_onONLast
15 minutes@javascript:gs.minutesAgoStart(15)@javascript:gs.minutesAgoEnd(0)");
gr.addQuery("response_time", ">", 1000);
gr.query();
while(gr.next()){
 var msg = "Job " + gr.url + "(" + gr.sys_id + ") is taking too long: " + gr.response_time + " ms";
 gs.eventQueue('slow.transaction', current, msg);
}

Click Submit

To apply the script, go to the module by searching in ServiceNow's filter search at the left (Event Subscription it should appear under
Perspectium > Observer)

Click to create a new Event SubscriptionNew

Type a name for your new Event Subscription next to Event

For the script section, add your script according to the example below

answer = event.param1 + "|" + event.param2

Click Submit

Turn off Observer monitoring

By default, Observer will monitor and collect data from your ServiceNow instance 24/7. However, you can configure Observer monitoring and data
collection to be turned off for a specified time window.

Here's how:

In ServiceNow, type into the Filter Navigator in the top left and select Observer Properties (it should appear under Perspectium > Observer)

Check the box under Enable a time period daily when Observer will not send data

Type or select a and to correspond with the time for which you want to turn off Observer monitoring and data collectionStart time End time

Click Save

Create a Perspectium Action for custom monitoring

 This is an advanced procedure that requires knowledge of scripting with ServiceNow APIs.

https://developer.servicenow.com/app.do#!/api_doc?v=kingston&id=no-namespace
https://developer.servicenow.com/app.do#!/api_doc?v=kingston&id=no-namespace

1.

2.

In ServiceNow, you can create your own to perform custom monitoring and send in your own events. For example, you may Perspectium Action
want to monitor the total number of tasks created daily. PerspectiumObserver script include that comes as part of You can do this by leveraging the
the Perspectium Core Update Set for ServiceNow. The following functions available for use in the PerspectiumObserver script include:

Function Arguments

postTuple
type
name
value

postDailyTableAggregates
tableName
eventName
aggField

postTableAggregates
tableName
eventName
aggField
encodedQuery

postSecondsAgoTableAggregates
tableName
eventName
aggField
fromDateStr
secondsAgo

Create custom flags to monitor events

Custom flags can be posted to Observer to mark an integration event such as success or failure. These flags can be used to alert as well.

Here's how to create a method that will post your custom flag to Observer using Python and the AMQP Python client:

Create a method that will post the flag to Observer using the code below, where is the Perspectium Mesh URL <perspectium_mesh_url>
and is your vhost as provided by Perspectium. <customer_vhost>

#!/usr/bin/env python

import pika
import sys
import socket
import os
import time

def postFlag():
 credentials = pika.PlainCredentials('username','password')
 connection = pika.BlockingConnection(pika.ConnectionParameters('<perspectium_mesh_url>',
5672,'<customer_vhost>',credentials))
 channel = connection.channel()
 channel.queue_declare(queue="")
 channel.basic_publish(exchange='',routing_key='psp.in.servicenow',body='{ topic:"monitor",
type:"label", key:"perspectiumdemo1", name:"integration.failed", value: "1"}')
 connection.close()

Call the postFlag() method in a try/catch block

2.

3.

4.

5.

6.

7.

try:
 soapMethodToServiceNow();
except Exception e:
 print "Integration failed, posting integration flag to Observer"
 postFlag()

Now, log into Observer and click the Settings icon ()

Click Alert Configurations

Click the tabEvents

Enter a name for your custom alert under the heading and select a from the dropdownName Type

Click Save

Share external events to monitor

Custom external events can be posted directly to Observer for monitoring. The following is an example using python and the AMQP python client to
create a method that will post a flag for external events to Observer, where is the Perspectium Mesh URL and <perspectium_mesh_url> <customer

is your vhost as provided by Perspectium:_vhost>

#!/usr/bin/env python

import pika
credentials = pika.PlainCredentials('username','password')
connection = pika.BlockingConnection(pika.ConnectionParameters('<perspectium_mesh_url>',
5672,'<customer_vhost>',credentials))
channel = connection.channel()
channel.queue_declare(queue="")
channel.basic_publish(exchange='',routing_key='psp.in.servicenow',body='{ topic:"monitor", type:"statsx",
key:"demo005", name:"transaction_sec", value: "1423"}')
connection.close()

Uninstall non-Observer components

After installing the Perspectium for ServiceNow update set and the Perspectium Observer update set, you have the option to uninstall non-
Observer tables, scheduled jobs, and modules from your ServiceNow instance. The Uninstall Non-Observer Components module ensures easy
and secure removal of Perspectium features (e.g. group share, bulk share, etc.) that are not needed by Observer.

To access this module, go to Click to proceed with uninstalling all non-Perspectium > Observer > Uninstall Non-Observer Components. Confirm
related Observer features from Perspectium.

You may have to log out and log back in to your ServiceNow instance in order to see all non-Observer modules removed from the navigation menu on
the left.

Tables that get removed may vary depending what version of the update set you have installed. Check the table below for ServiceNow tables and
scheduled jobs that will be removed:NOT

Tables Scheduled Jobs

psp_event_subscription Perspectium Check Outbound Message Limit

psp_follow_transaction Perspectium Data Cleaner - but need to modify

psp_in_message Perspectium Dynamic Sync Up

psp_out_message Perspectium Install

u_psp_actions Perspectium MultiOutput Processing

u_psp_alerts Perspectium Follow Transactions

u_psp_data_cleaner Perspectium Observer Actions

u_psp_imp_alert Perspectium Observer Actions Daily

u_psp_log_message Perspectium Observer Actions Hourly

u_psp_observer_out_message Perspectium Observer Data Cleaner

u_psp_properties Perspectium Observer Install

u_psp_queue_history Perspectium Observer Outbound Processing

u_psp_queues Perspectium Outbound Counter Processor

u_psp_sit_template - used with alerts Perspectium Queue History Data Cleaner

u_psp_situations - used with alerts Perspectium Queue Monitor

u_psp_uninstall Perspectium Replicator Subscriber

u_psp_heartbeat Perspectium Error Notification

Uninstall Observer

The Uninstall Observer module ensures easy and secure removal of Perspectium Observer features.

To access this module, go to Click to proceed with uninstalling all Observer-related Perspectium > Observer > --Uninstall Observer. Confirm
features from Perspectium.

1.

 : You may have to log out and log back in to your ServiceNow instance in order to see all Observer modules removed from the navigation NOTE
menu on the left.

Disable the Perspectium Observer update set

Disabling the Observer upset set will stop Perspectium Observer jobs from running on your ServiceNow instance.

Here's how:

Go to Perspectium > Observer > Scheduled Jobs and set the Active field on all jobs to false - this will stop any Perspectium jobs currently
runing, and set the triggers to cancel them from running again

Warning

DO NOT deactivate Perspectium MultiOutput Processing.

1.

2.

3.

4.

Now, delete all of the scheduled jobs that were set to false in step 1 - this prevents someone from accidentally scheduling the jobs to run
again.

In addition to the Scheduled Jobs, which poll for data, there are , made up of the and associated built-Event Listeners Event Subscription
in Now, delete all , which will also delete all associated Script Actions. Event Listeners Script Actions.

 Step 3 should account for all out-of-box Perspectium Script Actions, but you should double check that Script Actions are deleted, all
included any custom ones that may have been created. To do so, go to and delete any Perspectium > Observer > Script Actions
remaining script actions listed.

4.

5.

6.

7.

1.

Next, delete all - these need to be triggered manually to begin processing, but it's best practice to delete them allFollow Transactions

(Optional) You can hide the Perspectium application from view altogether to prevent users from accessing it - you can remove it by following
the steps on Application navigator

(Optional) You can remove the tables for Observer, since it won't be generating or posting any messages. If you wish, delete the following
tables only (we recommend leaving any remaining tables intact):

u_psp_situations
u_psp_sit_template
psp_event_subscription
psp_follow_transaction
u_psp_actions
u_psp_observer_out_message

Assign URLs to flags

In Observer's trend chart, you have the option to assign URLs to flags, allowing you to simply click on a flag to open a webpage.

Here's how:

Click on any flag that appears on a trend chart

https://docs.servicenow.com/bundle/jakarta-platform-user-interface/page/use/navigation/concept/c_ApplicationNavigation.html?title=Administering_Application_Menus_and_Modules#Enabling_and_Disabling_Application_Menus_or_Modules

1.

2.

3.

If a URL has not yet been assigned, a dialogue box should pop up, which displays the name and value of the flag, along with fields to add a
URL and description (optional). Fill out the URL field, and the description field (if you wish), and click Assign

If you want to modify the URL once it's been assigned to the flag, you can do so in Settings > Alert Configurations > Events

Aggregate a table

For any trend chart, you can generate an aggregate table of all metrics according to a specific date/time range, just with the click of one button. The
generated table will contain AVG, MIN, MAX, STD-DEV, and the total COUNT of the values in the range.

To aggregate a chart, click the function icon () as seen below

View details about your ServiceNow instance from Observer

To view details about your ServiceNow instance that is providing data to Observer, hover the on any Observer Observer for ServiceNow logo
page. A popup will appear displaying the following information about your ServiceNow instance:

Information Description

Build ServiceNow version for your instance

Instance ID Automatically-generated ID for your ServiceNow instance

Node ID Automatically-generated ID for the node your ServiceNow instance is running on

System ID Automatically-generated ID for the system your ServiceNow instance is running on

Started Timestamp for when your ServiceNow instance last came out of sleep mode

Max memory Maximum memory available for the node your ServiceNow instance is running on

Workers Number of threads for the node your ServiceNow instance is running on

Nodes Number of nodes available for your ServiceNow instance

Processors Number of processors for all available nodes for your ServiceNow instance

PSP Version The version (release) of the committed to your ServiceNow instancePerspectium for ServiceNow Update Set

PSP Server The Observer server that your Observer instance is running on

Track and add alerts to Events

This is of alerting when an import set run does not complete. If you are familiar with firing a custom event within ServiceNow, you can an example
skip to step 3.

1. Create a custom event

https://docs.servicenow.com/
http://wiki.perspectium.com/doku.php?id=updateset_overview

To illustrate the process of creating a custom event, we will use the example of an event firing for import set runs. To do this, go to the mRegistration
odule and create a new event. The name you choose should be unique and clearly reflect the event in question. As seen in the image below, the
example shown has the Event name on the table sys_import_set_run.failed sys_import_set_run

2. Fire the event

Next, you need to fire the event. There are several different ways you can do this in ServiceNow, such as via Scheduled Jobs, UI Actions, Scripting,
Business Rules, and more. For this example, we'll use a Business Rule to fire the event when the import set run state changes to . Did not complete

Then, fire the event using the command, with the following parameters: Event Name, Current Record, String Parameter 1, String gs.eventQueue
Parameter 2. Choose the parameters that make sense in the context of the event in question. These values can be anything for the sake of Observer.
See the image below for an example, which includes the table name and import set number.

3. Send the message

Now that the event is created and fired, you can set up Observer to monitor these events.

Create an Event Subscription from within Observer's module - once there, click .Event Subscription New

In the Event field, find and select the created event you want to reference. Then, choose a custom flag - this will make more sense once you reach
step 5.

For the example in the image below, we used the flag ISF for Import Set Failed.

Click , and the Script Action will be auto-generated to send out the message. You should not need to modify this. Submit

4. Alerting on the event

As long as your credentials are set up correctly, the message will be sent when the event is fired. Next, you may want to configure Alerts to go along
with the Event. Here's how:

Verify emails

In , verify the emails and associated alert priority that you want for this event. Settings > Notifications > Emails

Configure the Alert

In , create the appropriate event handler.Settings > Alert Configurations > Events

Column Description

Name The name of the event to trigger an alert. Use “%” at the end of the name to treat the end as a wildcard e.g. “sys_import_set_run%”.
This way events such as “sys_import_set_run.success” and “sys_import_set_run.failed” will both trigger an alert.

Value The minimum value to trigger an alert. Leave this blank if any value for this event should trigger an alert.

Description A plain text description for the alert, for your own use.

Type The type of alert to trigger. Options available are High, Medium, and Low.

Events as received by Observer will not have the value at the end, so you , as this will ^FLAG should not specify the event name as Name^FLAG
cause the event alert to not find a match, and as a result, will not fire an alert.

This event configuration will map the ServiceNow flag from its original (in the example we used earlier, the flag would be ISF), to a flag based on the
priority assigned (in this example, it was H (High)).

Note for Dubnium users

In the Dubnium version, custom events can be tested like custom alerts after they are saved. This can be done by clicking on the Play icon (>) under A
. The garbage icon replaces the "Date Selected" button. After being tested, the event will be shown in the monitor and in the list after refreshing ctions

the page. Since these custom events have types High, Medium, and Low, they will only show in the Alert lists, not in the Event list, when tested.

Example Email

Here is the email that you would receive for the example we gave:

5. View the event

If you assigned the Event to a High, Medium, or Low priority, it will appear on your Monitor page.

It will also appear on your Overview page under your trend group charts, so you can view metrics relative to the moment the event occurred. Notice in
the chart below, the example that we used is showing up as a flag labelled "H" for High priority.

If you do not create a specific Event configuration within Observer, it will still appear within the trend group chart, but with the flag that you assigned it
within ServiceNow. Below, you can see our example with the ISF flag.

When might you want to use this?

This feature can be very helpful if, let's say, you upgrade a subsystem and want to compare the SQL response metrics before and after.

	Optional Observer Configurations

