
ServiceNow subscribe
The Perspectium application involves the transfer of data from a sharing instance flowing into a
subscribing instance via the Integration Mesh. For this to happen, you need to set up both a shared
queue on your sharing instance and a subscribing queue on your subscribing instance.

If you haven't set up these queues yet, please find more information and instructions to do so .here

Once you have set up these shared and subscribed queues, and have configured how your data will be
, you must also configure how your subscribing instance will consume shared from your sharing instance

the shared data. This is done in the module through the use of scripts. Subscribe

What's on this page?

About before and after
subscribe scripts
Before subscribe scripts
After subscribe scripts
Create before and after
subscribe scripts
Sync all source fields

Here are the ways in which you can use the module to configure your ServiceNow subscribe instance. Subscribe

About before and after subscribe scripts
Once you have configured a ServiceNow instance as a subscriber, you can use before/after subscribe scripts to customize how the data will be
consumed and stored in your subscribing ServiceNow instance.

Before subscribe scripts
These scripts are created with server-side JavaScript and will execute right a record insert or update, allowing the chance to modify the record before
before persisting. Within your before subscribe script, you have access to the following variables:

Variable Description

current Record that is being inserted or updated

repl_gr Temporary inbound record. Will be mapped to by default. repl_gr

gr_before Record before any update is made to it. If the record doesn't exist (i.e., for an insert), then this variable will be assigned to current.

qcurrent Record within the psp_in_message table (pulled from the Perspectium Mesh). Use the message's key value to determine its
source.

ignore Can assign a value of in order to stop the execution of the subscribetrue

qcurrentxml Holds the xml object of the inbound record

xml_util Holds an xml utility for working with qcurrentxml

 subscribe is aGlobal Subscribe definition that when created, will allow all incoming messages to be subscribed. If there is an existing
subscribe definition for a specific table, its definition will override the global definition.

https://docs.perspectium.com/display/helium/ServiceNow+shared+and+subscribed+queues
https://docs.perspectium.com/display/helium/Shares
https://docs.perspectium.com/display/helium/Shares
https://docs.perspectium.com/display/helium/ServiceNow+subscribe#ServiceNowsubscribe-Aboutbeforeandaftersubscribescripts
https://docs.perspectium.com/display/helium/ServiceNow+subscribe#ServiceNowsubscribe-Aboutbeforeandaftersubscribescripts
https://docs.perspectium.com/display/helium/ServiceNow+subscribe#ServiceNowsubscribe-Beforesubscribescripts
https://docs.perspectium.com/display/helium/ServiceNow+subscribe#ServiceNowsubscribe-Aftersubscribescripts
https://docs.perspectium.com/display/helium/ServiceNow+subscribe#ServiceNowsubscribe-Createbeforeandaftersubscribescripts
https://docs.perspectium.com/display/helium/ServiceNow+subscribe#ServiceNowsubscribe-Createbeforeandaftersubscribescripts
https://docs.perspectium.com/display/helium/ServiceNow+subscribe#ServiceNowsubscribe-Syncallsourcefields
https://docs.perspectium.com/display/helium/ServiceNow+shared+and+subscribed+queues#ServiceNowsharedandsubscribedqueues-CreateaServiceNowsubscribedqueue

1.

2.

3.

4.

 Go to top of page

After subscribe scripts
These scripts are also created with server-side JavaScript and will execute right a record from a sharing instance is synced on the subscribing after
instance. Within your after subscribe script, you have access to the following variables:

Variable Description

current Record that was inserted, updated or deleted, the destination record

qcurrent Record within the table (pulled from the). Use the message's value to determine its source. psp_in_message Perspectium Mesh key

qcurrentx
ml

Holds the xml object of the inbound record

xml_util Holds an xml utility for working with qcurrentxml

subscribe
_gr

Holds the GlideRecord object corresponding to the subscribe record configuration itself (You can use t subscribe_gr.getTableName()
o access the name of the table you're trying to insert)

 Go to top of page

Create before and after subscribe scripts
Here's how to create these scripts:

Log into your ServiceNow instance that is sharing to the subscribing instance you want to configure, and go to sharing Perspectium > DataS
ync > Subscribe.

In the resulting page, find and select the subscribe record that you want to configure.

In the resulting subscribe record, click the tab. You should see the and Filter and Enrichment Before subscribe script After subscribe
fields.script

Use the available fields to enter your desired scripts. See below for some examples. Once you're done, click . Update

 Go to top of page

Examples of before and after subscribe scripts
Below are some examples of scripts you can use to achieve specific results:

Populate the data using the incoming key

Perhaps you are receiving data from multiple sources and you want to denote the source in some manner. You can use the value when qcurrent.key
updating your record.

The following script prefixes the short description with the key

current.short_description = qcurrent.key + " - " + current.short_description;

Map data within a record

For example, to set the field to the incoming record's field, you would do this: short_description number

current.short_description = repl_gr.number;

Dot-walking

You can use dot-walking to display values from a referenced field.

For example, if you were subscribing to a ticket record, in the text box, you can reference a field by using the following script: before subscribe script

current.name = repl_gr.assigned_to.name

This will display the versus just the . display_value sys_id

Use gr_before to fire an Event

For the case where you are updating a record that already exists in the system, “gr_before” is a GlideRecord object for this record before doing the
update. This is useful for when you want to compare a record's values as they currently exist in the system with the values in the incoming record
(repl_gr) and do any processing as a result.

For example, to fire the incident table's event when the assignment group is changed (the “incident.assigned.to.group” event as specified in the
incident table's “incident events” business rule), you would do the following:

if (gr_before.assignment_group != repl_gr.assignment_group) {
 gs.eventQueue("incident.assigned.to.group", current, current.assignment_group, previous.assignment_group.
getDisplayValue());
}

Use ignore

For example, the following script from a ticket subscribe will ignore a specific ticket with the number value of TKT0010001.

if (current.number == "TKT0010001") {
 ignore = true;
}

You can also filter records from different instances by checking the value. For example, the following script will ignore any records with the valu key key
e of “ ”.dev14945

if (qcurrent.key == "dev14945") {
 ignore = true;
}

Run script before a Delete

Support has been added so you can run script before doing a delete such as inserting a record into another table. In these cases you should use
“repl_gr” to access the incoming record in case the incoming record doesn't exist in the instance.

For example, say you receive a delete but you want to insert a record into another table instead, and not do an actual delete:

var tgr = new GlideRecord("incident");
tgr.short_description = repl_gr.short_description + " new";
tgr.insert();
ignore = true;

Fire replication through subscribe

There are some cases where you want to replicate a message right after Subscribing it in. In most cases you can select “Run Business Rules” to treat
this replication as a normal record transaction and our Dynamic Share's Business Rule should fall in line. If however you cannot use this on the
Subscribe than you can execute the following command.

var pspRepl = new PerspectiumReplicator();
//sys_id of desired Dynamic Share
pspRepl.shareRecord(current, "incident", "bulk", "d24f961b4f043200daa12ed18110c72d");
ignore = false;

This is essentially the code that gets executed from the Business Rule for a Dynamic Share. With this you will put in the current record, the table
name, the flag “bulk”, and the sys_id of the Dynamic Share you want this to route through.

It is also important to add in the (ignore = false;) statement to the Subscribe. There are cases where the execution of the Dynamic Share's “Before
Share Script” can cause the Subscribe to skip the update. Adding in this command will ensure the record gets committed to the Subscribing instance.

Maintain a column's value

If you want to lock a column from being changed through the Subscribe you can put in the following line to set this column to it's “previous” value.
Effectively setting it to itself so any change coming in won't take affect.

current.short_description = gr_before.short_description;

Access the XML object of the inbound record

For cases where the inbound record is different from the subscribing table (i.e. it has extra fields that the table on the subscribing instance doesn't
have), you can now reference the XML object directly using the qcurrentxml variable.

The xml_util variable allows you to access values from the qcurrentxml object using getElementValueByTagName() function. This functions takes in
two parameters, the XML object (qcurrentxml) and the name of the field in the XML.

For example, if you want to access the 'dv_priority' field's value in the XML and save it into the inbound record's short_description field:

if (qcurrentxml) {
 var elemValue = xml_util.getElementValueByTagName(qcurrentxml, 'dv_priority');
 current.short_description = elemValue;
}

We suggest that you check if qcurrentxml exists in case of any issues decrypting the value and getting the XML object.

1.

2.

3.

4.

5.

6.

 Go to top of page

Sync all source fields
This feature is useful in cases when your sharing application has custom fields that do not typically exist in ServiceNow table schemas. Enabling the
feature will ensure that any custom or outlying fields in your source instance are properly synced in your subscribing instance by inserting missing
fields.

Here's how to sync all source fields with the fields in your subscribing ServiceNow instance:

Log into your ServiceNow instance and go to subscribing Perspectium > DataSync > Subscribe.

In the resulting page, find and select the subscribe record that you want to sync all source fields for.

In the resulting subscribe record, click the tab.Source Instance

Check the box. This will reveal some new fields.Sync all source fields

Type the name of your sharing instance (e.g., dev12345) in the Source Instance field, and username and password of your sharing
in the appropriate fields.instance

Click . Update

 Go to top of page

NOTES:

option, the fields that exist in your source instance and not in your subscribing instance will be created in your If you use this
subscribing instance . For example, if you have a field in your sharing instance with the initial letter of the field label capitalized only
labeled custom FIELD, that field will be labeled in your target instance as Custom field.

The option will not work if multiple subscribes are created for the same table and one subscribe has the Sync all source fields Ski
option checked.p incoming records with field discrepancies

	ServiceNow subscribe

